

Repositioning teachers and learners in Science assessment for 21st century learning

Repositioning teachers and learners in Science assessment for 21st century learning

Repositioning teachers and learners Theoretical framework for study

Science Learning area

21st century learning FLS as context for/enactment of 21st century learning

Assessment NCEA

Research design

What does, and what can, science learning look like in flexible spaces when students and teachers are focussed on NCEA assessment?

Phase One: What does learning look like?

Case study research

Phase Two: What can learning look like?

Collaborative action research

multi-case study
 3 FLS schools
 inform Phase Two

◇ one FLS school◇ 2-3 cycles

Teacher transitions

Old school

- Traditional single-cell laboratory classrooms
- Most equipment stored in laboratories
- Ownership of space and students
- Teachers were comfortable and liked this arrangement

New reality

- Shared commons space
 Shared, separate, movein/move-out laboratory
 - areas for practical work
- Equipment stored centrally, collected prior to practical work
- ♦ A loss, a repositioning

School Two: A loss Preliminary analysis / findings

Science subject identity

- knowledge-based external NCEA assessments
- task-based internal NCEA assessments
- practical work

Science teacher practice-identity

- teacher-led transmission and repetition for content learning
- responsiveness and spontaneity in practical work and demonstrations

School Two: A repositioning Preliminary analysis / findings

Science subject identity

- knowledge-based external NCEA assessments
- task-based internal NCEA assessments
- practical work

Science teacher practice-identity

- student-led, personalised approaches
- teacher-expert/ repetition online
- team teaching
- practical work

References

Absolum, M., Flockton, L., Hattie, J., Hipkins, R., Reid, I. (2009). Directions for assessment in New Zealand: Developing students' assessment capabilities. Retrieved from http:// assessment.tki.org.nz/Assessment-in-the-classroom/Directions-for-assessment-in-New-Zealand-DANZ-report

Benade, L. (2014). Knowledge and educational research in the context of "twenty-first century learning". *European Educational Research Journal, 13*(3), 338-349. doi:10.2304/eerj.2014.13.3.338

Benade, L. (2015a). Teachers' critical reflective practice in the context of twenty-first century learning. *Open Review of Educational Research*, 2(1), 42-54. doi: 10.1080/23265507.2014.998159

Bisset, J. (2014). The move to modern learning environments in New Zealand secondary schools : Step forward or smokescreen? (Unpublished Masters thesis). Unitec Institute of Technology, Auckland, New Zealand.

Bolstad, R., & Gilbert, J. (2012). Supporting future oriented learning and teaching – a New Zealand perspective. Wellington, New Zealand: Ministry of Education. Boyd, S., & Hipkins, R. (2012). Student inquiry and curriculum integration: Shared origins and points of difference (part A). Set: Research Information for Teachers, 3, 15-23.

Bull, A. (2009). *Thinking together to become 21st century teachers: Teachers' work: Working paper #1*. Wellington, New Zealand: New Zealand Council for Educational Research. Retrieved from http://www.nzcer.org.nz/system/files/21st-century-teachers-200906.pdf

Bull, A., Gilbert, J., Barwick, H., Hipkins, R., & Baker, R. (2010). Inspired by science. In *Looking ahead: Science education for the twenty-first century* (pp. A-9 - A-54). Retrieved from http://www.pmcsa.org.nz/wp-content/uploads/Looking-ahead-Science-education-for-the-twenty-first-century.pdf

Burr, V. (2003). Social constructionism. East Sussex, England: Routledge.

Burr, V. (2015). Social constructionism (3rd ed.). doi:10.4324/9781315715421

Capps, D. K., & Crawford, B. A. (2013). Inquiry-based instruction and teaching about nature of science: Are they happening? *Journal of Science Teacher Education*, 24(3), 497-526. doi:10.1007/s10972-012-9314-z

Carlone, H., Haun-Frank, J., & Kimmel, S. (2010). Tempered radicals: elementary teachers' narratives of teaching science within and against prevailing meanings of schooling. *Cultural Studies of Science Education*, 5(4), 941-965. doi: 10.1007/s11422-010-9282-6

Cohen, L., Manion, L., & Morrison, K. (2011). Research methods in education (7th ed.). Abingdon, England: Routledge.

Danielsson, A. T., Warwick, P. (2014). 'You have to give them some science facts': Primary student teachers' early negotiations of teacher identities in the intersections of discourses about science teaching and about primary teaching. *Research in Science Education*, 44(2), 289-305. doi:10.1007/s11165-013-9383-9

References

East, M. (2014). Working for positive outcomes? The standards-curriculum alignment for learning languages, and its reception by teachers. Assessment Matters, 6, 65-

Erstad, O., Voogt, J. M., Mishra, P., & Dede, C. (2013). Challenges to learning and schooling in the digital networked world of the 21st century. Journal of Computer Assisted Learning, 29(5), 403-413. doi:10.1111/jcal.12029

Gillon, K., & Stotter, J. (2011). Inquiry learning with senior secondary students: Yes it can be done. Access, 25(3), 14-19.

Harré, R. & van Langenhøve, L. (1999). The dynamics of social episodes. In R. Harré & L. van Langenhøve (Eds.), *Positioning theory: Moral contexts of intentional action* (pp. 1-13). Oxford, England: Blackwell.

Hilton, A., & Hilton, G. (2013). Incorporating digital technologies into science classes: Two case studies from the field. *International Journal of Pedagogies and Learning*, *8*(3), 153-168. doi:10.5172/ijpl.2013.8.3.153

Hipkins, R. (2010). *The evolving NCEA: Findings from the NZCER national survey of secondary schools 2009*. Wellington, N.Z: New Zealand Council for Educational Research. Retrieved from http://www.nzcer.org.nz/research/publications/evolving-ncea

Hipkins, R. (2013). NCEA one decade on: Views and experiences from the 2012 NZCER national survey of secondary schools. Wellington, New Zealand: New Zealand Council for Educational Research. Retrieved from http://www.nzcer.org.nz/system/files/NCEA%20Decade%20On%20Final_web%20%281%29.pdf

Hipkins, R., & Spiller, L. (2012). NCEA and curriculum innovation: Learning from change in three schools. Wellington, New Zealand: New Zealand Council for Educational Research. Retrieved from http://www.nzcer.org.nz/research/publications/ncea-and-curriculum-innovation

Hume, A., & Coll, R. (2010). Authentic student inquiry: The mismatch between the intended curriculum and the student-experienced curriculum. *Research in Science & Technological Education*, 28(1), 43-62. doi:10.1080/02635140903513565

Levinsson, M., Hallström, H., & Claesson, S. (2013). Problems in developing formative assessment: A physics teacher's lived experiences of putting the ideas into practice. Assessment Matters, 5, 116-142.

Lin, M., & Bolstad, R. (2010). Virtual classrooms: 'Lessons for teaching and learning in the 21st century'. Set: Research Information for Teachers, 1, 2-9.

Moeed, A. (2010). Teaching to investigate in year 11 science, constrained by assessment. New Zealand Annual Review of Education, 20, 74.

Muehrer, R., Jenson, J., Friedberg, J., & Husain, N. (2012). Challenges and opportunities: Using a science-based video game in secondary school settings. *Cultural Studies of Science Education*, 7(4), 783-805. doi:10.1007/s11422-012-9409-z

Ritchie, S. (2002). Student positioning within groups during Science activities. *Research in Science Education, 32*, 35-54. doi: 10.1023/A:1015046621428 Simons, M., & Masschelein, J. (2008). From schools to learning environments: The dark side of being exceptional. *Journal of Philosophy of Education, 42*(3-4), 687-704 doi:10.1111/j.1467-9752.2008.00641.x

Williams, J., Cowie, B., Khoo, E., Saunders, K., Taylor, S., & Otrel-Cass, K. (2013). Implementing e-network-supported inquiry learning in science. *Set: Research information for teachers*, *3*, 11-18.

Yin. R. (2014). Case study research: Design and methods. Thousand Oaks, CA: SAGE.